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Abstract

Since its emergence in 2009, perovskite photovoltaic technology has achieved
remarkable progress, with efficiencies soaring from 3.8% to over 26%. Despite
these advancements, challenges such as long-term material and device stability
remain. Addressing these challenges requires reproducible, user-independent
laboratory processes and intelligent experimental preselection. Traditional
trial-and-error methods and manual analysis are inefficient and urgently need
advanced strategies. Automated acceleration platforms have transformed this
field by improving efficiency, minimizing errors, and ensuring consistency.
This review summarizes recent developments in machine learning-driven auto-
mation for perovskite photovoltaics, with a focus on its application in new
transport material discovery, composition screening, and device preparation
optimization. Furthermore, the review introduces the concept of the self-driven
Autonomous Material and Device Acceleration Platforms (AMADAP) labora-
tory and discusses potential challenges it may face. This approach streamlines
the entire process, from material discovery to device performance improve-
ment, ultimately accelerating the development of emerging photovoltaic
technologies.
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1 | INTRODUCTION

Perovskite photovoltaics have experienced remarkable
development since their first application in solar cells in
2009. The power conversion efficiency (PCE) of these
materials has surged from 3.8% to over 26%.' Perovskite
materials, typically organic-inorganic metal halides with
an ABX; structure, consist of organic and inorganic cat-
ions at the A-site (e.g., MA™: methylammonium, FA™:
formamidinium, Cs*: cesium), metal cations at the B-site
(e.g., Pb*": lead, Sn*": tin), and halogen anions at the
X-site (e.g., I": iodide, Br™: bromide, C1": chloride). This
crystal structure imparts several advantageous photovol-
taic properties, including a high absorption coefficient,
long carrier lifetimes, and tunable band gaps.* These
attributes enable efficient light absorption, effective car-
rier transport, and spectral response optimization.>®
Additionally, solution-processable fabrication techniques,
such as spin-coating, doctor-blading, and spray-coating,
provide cost-effective production at low temperatures
compared with silicon-based photovoltaics.”® However,
perovskite solar cells face critical challenges, such as
long-term material and device stability.'*"* Addressing
these issues requires efforts in material screening, inter-
face engineering, device structure design, and process
parameter optimization.'**® These processes often entail
intricate multi-objective optimization challenges within
large multidimensional composition and parameter
spaces, sometimes involving millions of potential candi-
dates to explore. Traditional trial-and-error approaches
and manual analysis, constrained by inefficiency and
labor-intensive processes, are inadequate for tackling
these challenges.'””'® Overcoming these bottlenecks
requires advanced strategies capable of rapidly processing
large experimental datasets and optimizing complex
parameter spaces.'’

Automated acceleration platforms have emerged as
transformative tools for addressing high-dimensional
optimization challenges across various disciplines, such
as chemistry, physics, and drug synthesis.”’*® The inte-
gration of automation into energy materials research,
particularly for perovskite solar materials, has garnered
increasing attention.”* > These platforms enable high-
throughput experimentation, processing a large number
of samples in parallel while improving efficiency, reduc-
ing errors, and ensuring reproducibility.”* > Further-
more, the introduction of machine learning
(ML) algorithms into materials science has become
increasingly pivotal, as evidenced by the increasing
number of related publications (Figure 1).36* The
growing application of ML enhances the capabilities of
these automated platforms.’”* ML algorithms can
identify complex patterns within experimental data and
predict the performance of untested materials and
processes.*®™® These algorithms extract key insights
from large-scale datasets to guide experimental design
and parameter optimization.® The predictive power of
ML models shifts the optimization process from reli-
ance on experience and intuition to a robust, data-
driven approach.” >* The combination of ML and auto-
mation offers a powerful strategy for advancing perov-
skite photovoltaic technology. This integrated approach
addresses the limitations of traditional methods by
improving efficiency, accuracy, and optimization
capabilities.>* >’ By accelerating material discovery and
process development, ML-driven automation represents
a significant leap forward, enabling the rapid advance-
ment of perovskite photovoltaics and underscoring its
transformative  potential in  renewable energy
technologies.*’

This review overviews the advancements in ML-
driven automation for perovskite photovoltaics research
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FIGURE 1

The increasing number of research publications (based on a Web of Science search) in the following topics: (A) “Machine

Learning (ML) + Materials Science (MS)”, (B) “ML + MS + High-throughput (HT)”, and (C) “ML + Photovoltaics (PVs)”. The data,
collected from January 2000 to July 2024, underscores the growing utilization of automated platforms in material science research.
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material selection, interface engineering, device structure design, and preparation process optimization.

and development. It explores autonomous methods
for novel transport material discovery, rapid
multicomponent screening, performance prediction, and
process optimization. The review concludes by introduc-
ing the concept of the self-driven Autonomous Material
and Device Acceleration Platforms (AMADAP) labora-
tory, which integrates autonomous material discovery
with device optimization. Potential challenges in
implementing such platforms are also discussed. By sum-
marizing current achievements and proposing a strategic
roadmap, this review provides valuable insights for
advancing perovskite photovoltaic technology.

2 | ADVANCING PEROVSKITE
PHOTOVOLTAICS THROUGH ML-
DRIVEN AUTOMATION

The development of high-performance perovskite photo-
voltaic devices requires a comprehensive consideration
of various aspects such as composition selection, inter-
face engineering, device structure design, and process
optimization (Figure 2).50°%3 Each of these factors criti-
cally influences key performance metrics, such as PCE
and stability.** However, optimizing these factors via
traditional methods is often challenging due to the vast

parameter spaces and interdependent nature of the vari-
ables involved.> ML-driven automation platforms have
transformed these processes by improving efficiency
and accuracy. These platforms enable rapid exploration
of parameter spaces, uncover complex relationships,
and  optimize  processes  systematically.  This
section discusses how ML-driven automation accelerates
transport materials discovery, perovskite component
screening, and the optimization of device fabrication
processes.

2.1 | New organic transport materials
discovery

The rapid development of ML technology is transforming
organic synthesis, with applications ranging from reac-
tion optimization to automated synthesis and accelera-
tion of material discovery. ML-driven automation holds
great promise for identifying structure-property relation-
ships and discovering new hole-transport materials for
perovskite devices.®®”* This section reviews the role of
ML-driven automation in organic synthesis and hole-
transport material discovery for perovskite devices from
three perspectives: reaction optimization, structure-
property relationships, and material discovery.
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Bayesian reaction optimization. (A) Example of chemical process optimization: Synthesis of BMS-911543. (B) Typical

reaction optimization approaches, including mechanistic studies, design of experiments, high-throughput experimentation, and response
surface modeling. (C) Overview of Bayesian optimization with a Gaussian process surrogate model and an expected utility surface for

experiment selection. Reprinted with permission.”

2.1.1 | Reaction optimization

Organic semiconductors are commonly synthesized via
metal-catalyzed coupling reactions to form conjugated
chains, where catalyst selection plays a pivotal role.””
Traditionally, catalyst design for asymmetric reactions
has relied on empirical methods, where researchers qual-
itatively identify structural patterns to enhance selectiv-
ity. Integrating ML algorithms with cheminformatics
offers a transformative approach by analyzing large
datasets to uncover hidden patterns and optimize reac-
tion conditions efficiently. Doyle et al. demonstrated the
potential of Bayesian optimization (BO) in identifying
optimal reaction conditions.”® Using a benchmark dataset
derived from a palladium-catalyzed direct arylation reac-
tion, they systematically compared the performance of
BO with traditional human decision-making (Figure 3).
The BO framework showed its practical utility by being
further applied to real-world scenarios, such as
Mitsunobu and deoxyfluorination reactions. An
innovative online game in this study linked expert
decision-making with real experimental outcomes, which
provided a novel way to evaluate optimization strategies

Copyright 2021, Springer Nature.

in reaction development. Schoenebeck et al. addressed
reaction optimization challenges by employing an
unsupervised learning algorithm. This method success-
fully predicted and validated effective phosphine ligands
using only five experimental data points.”* The approach
demonstrated remarkable predictive capabilities in
predicting dinuclear Pd(I) complexes among 348 ligands.
These examples illustrate the significant potential of ML-
driven frameworks in accelerating reaction optimization
for organic semiconductors.

In addition to -catalysts, coupling reactions are
influenced by factors such as substrates, ligands, bases,
and additives. High-throughput experimentation com-
bined with ML has proven effective in evaluating these
factors comprehensively.”* Ahneman et al. applied this
approach to a palladium-catalyzed Buchwald-Hartwig
cross-coupling between aryl halides and 4-methylaniline.
Computational scripts calculated and extracted atomic,
molecular, and vibrational descriptors from the reaction
components. By using these descriptors as inputs and
reaction yield as the output, a random forest algorithm
was employed significantly outperforming traditional lin-
ear regression analysis. Its advantages included better
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FIGURE 4 (A) Schematic and photograph of the chemical robot and the workflow of ML-guided exploration of chemical space.
Reprinted with permission.*® Copyright 2018, Springer Nature. (B) Photograph of the autonomous mobile robot and the output from the
autonomous robotic search. Reprinted with permission.”” Copyright 2020, Springer Nature.
handling of sparse training datasets and more robust out- incorporate  optimization algorithms into daily

of-sample predictions. The results highlight its potential
for streamlining synthetic methodology optimization in
chemical research. Similarly, Denmark et al. constructed
an experimental dataset and utilized neural network
models to design systematic experiments. This approach
successfully predicted several new conditions for C-N
coupling reactions with yields exceeding 85%.”> Random
forest algorithms further improved yield prediction accu-
racy using high-throughput experimental data. BO, an
iterative response surface-based global optimization algo-
rithm, has also shown exceptional capabilities in reaction
tuning. Doyle et al. applied the BO-guided framework to
optimize various coupling reactions, including C-C and
C-N bond formations, significantly enhancing efficiency
and consistency.”> To make these tools accessible, they
developed open-source software for chemists to

workflows, which offers better performance compared
with human decision-making.”® These examples under-
score the transformative role of ML in optimizing com-
plex coupling reactions, advancing both experimental
efficiency and predictive accuracy.

2.1.2 | Autonomous synthesis

Combining ML algorithms with automated platforms to
autonomously design and execute experiments represents
a transformative method in accelerating material itera-
tion and reducing manual workloads for chemists. Cro-
nin et al. demonstrated this approach by employing
chemical computer-aided design (ChemCAD) to digitize
reaction equipment and perform multi-step organic
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type OFETs. Reprinted with permission.** Copyright 2019, John Wiley and Sons. (C) Concepts of solubility prediction and data availability.
Physical aspects of the dissolution process of solids and corresponding descriptors. Reprinted with permission.®> Copyright 2019, Springer
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synthesis.”® This method translated traditional bench-
scale synthesis into platform-independent digital code,
which guided the fabrication of 3D-printed devices capa-
ble of executing the entire synthetic route. For example,
this approach successfully synthesized the
y-aminobutyric acid receptor agonist, (+)-baclofen. In the
same year, Cronin's team developed another ML-
controlled organic synthesis robot capable of performing
chemical reactions and analyses faster than manual
methods (Figure 4A).>® The system encoded chemical
inputs in binary and used real-time nuclear magnetic res-
onance (NMR) and infrared (IR) spectroscopy for assess-
ment. Based on data from only 10% of the dataset, the
system predicted the reactivity of approximately 1000
reaction combinations with over 80% accuracy. The
model also discovered four new reactions, which were
later manually validated by a chemist. Similarly, Bode
et al. utilized a high-throughput photocatalysis platform
to generate data for predicting molecular properties and
reaction success rates using deep learning models.”” This
platform processed 1152 discrete reactions within a short
period, significantly enhancing the efficiency of new mol-
ecule discovery. Cooper's team developed a mobile
robotic chemist capable of autonomously planning syn-
thetic routes and optimizing reaction conditions
(Figure 4B).”” This system iteratively optimized reaction
parameters, successfully synthesizing multiple organic

compounds with conversion rates far exceeding existing
benchmarks. These advancements highlight the
transformative potential of integrating ML with auto-
mated platforms. By enabling autonomous experimenta-
tion, data-driven predictions, and iterative optimization,
this approach significantly accelerates material develop-
ment and opens new avenues for discovering complex
synthetic pathways and high-performance materials.

2.1.3 | Structure-property relationships

Understanding structure-property relationships is impor-
tant for designing new molecules and advancing material
development. Human cognition, limited by memory
capacity and experiential biases, often provides limited
insights into these complex relationships.®*** In contrast,
ML excels at analyzing multivariate datasets to uncover
comprehensive and intricate patterns. Berlinguette et al.
developed a self-driving laboratory called the Ada plat-
form to optimize thin-film material compositions and
processing parameters for achieving enhanced material
mobility (Figure 5A).% Min-Hsuan Lee applied ML tech-
niques, such as Gradient Boosting and Random Forest
regression, to model charge transport mobility in n-type
organic field-effect transistors (OFETs). By optimizing
HOMO and LUMO energy levels, this approach
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selected molecules for DFT calculations, and the synthesized database of experimentally synthesized molecules for model training and

validation. (B) Molecular descriptors for the intermediate database were obtained through DFT calculations. (C) Synthesized molecules were

processed, purified, and characterized using an in-house high-throughput platform. (D) Synthesized molecules were utilized as HTMs in

PSCs, and devices were characterized using ITO and BCP/Ag configurations. (E) The model trained on HTM descriptors and device

parameters iteratively predicted, synthesized, and measured new molecules, leading to the discovery of the best HTM. (F) Molecular

iterations were summarized and analyzed to refine the process. Reprinted with permission.®® Copyright 2024, AAAS.

deepened the understanding of n-type organic materials,
informed material and electrode selection, and quantified
trade-offs between charge transport mobility and elec-
tronic energy levels (Figure 5B). This work advanced the
design of next-generation organic circuits.** For solution-
processed perovskite solar devices, understanding the
relationship between solubility and molecular structure

is vital. Nguyen et al. introduced a method combining
ML algorithms—ANN, SVM, RF, ExtraTrees, Bagging,
and GP—with computational chemistry to predict solu-
bility in organic solvents and water (Figure 5C).*° Their
models effectively captured the physicochemical relation-
ship between solubility and molecular properties across
different solvents. This approach not only reproduced
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experimental trends but also proposed rational strategies
to improve model accuracy, providing valuable insights
for optimizing materials for perovskite solar devices.
These examples demonstrate how ML-driven insights
into structure-property relationships accelerate material
discovery and enable the design of advanced materials
for diverse applications.

2.1.4 | Material discovery

Perovskite devices require organic semiconductors with
specific properties, including energy level alignment, sol-
ubility, interaction with perovskites, defect passivation,
and stability.*® Combining automated synthesis with
structure-activity relationship analysis within a single

Inverted p-i-n device structure

ML-guided workflow used to identify candidate PH anions as passivants to improve PSCs performance. Reprinted with

system provides an effective approach to material discov-
ery (Figure 6). Automated synthesis delivers a continuous
stream of experimental data to ML algorithms. High-
throughput experiments and in situ material characteri-
zation ensure robust data consistency and repeatability.
The iterative interaction between ML and automated syn-
thesis facilitates the discovery of unexpected and high-
performing materials. Recently, our team developed a
high-throughput synthesis and purification platform for
hole-transporting  materials used in  perovskite
devices.®”®® This automated platform directly evaluated
performance by integrating synthesized materials into
devices. ML algorithms modeled the relationship
between molecular structure and device performance,
iteratively refining the model during the discovery
process.
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FIGURE 8 Schematic of the automated workflow for combinatorial discovery and multivariate analysis of stability in quasi-ternary
metal-halide perovskite systems. Reprinted with permission.”” Copyright 2020, American Chemical Society.

From a pool of 1 million candidate molecules, a series
of high-performance hole-transport materials was suc-
cessfully identified. The discovered materials achieved
top efficiencies of up to 26.2%. This result highlights the
transformative potential of combining ML and auto-
mated synthesis to accelerate the discovery and develop-
ment of advanced materials for perovskite photovoltaics.
Sargent's group developed a ML workflow to accelerate
the discovery of anions by using full-density functional
theory calculations to train their ML model (Figure 7).*
This physics-informed model identified promising mole-
cules with head groups designed to prevent lattice distor-
tion and anti-site defect formation, paired with tail
groups optimized for robust surface attachment. Using
this approach, they screened 15 potential anions and suc-
cessfully incorporated them into high-performance
perovskite solar cells, achieving a maximum PCE
of 24.56%.

2.2 | Perovskite component screening

Perovskite materials encompass a wide variety of chemi-
cal compositions and structural forms, with each combi-
nation offering unique performance characteristics.”
Identifying the optimal material configuration for specific
applications requires navigating a vast parameter space
of chemical elements and their combinations. Traditional
experimental methods, however, often struggle to effi-
ciently identify optimal combinations in a short
timeframe. In this context, ML-driven automation

platforms have emerged as powerful tools to address
these challenges. These intelligent systems can efficiently
prepare hundreds or even thousands of samples and ana-
lyze extensive experimental datasets within a short
period. By uncovering patterns, discovering new material
combinations, and predicting their properties, ML-driven
platforms significantly accelerate the pace of innovation
and discovery.

2.2.1 | Metal-halide perovskite microcrystals
Perovskite materials are pivotal in determining the sta-
bility of photovoltaic devices, making careful screening
for stable compositions important to ensure device lon-
gevity and reliability.>*> The anti-solvent method is
widely used for producing high-quality perovskites.”
Leveraging high-throughput automation enables rapid,
efficient, and precise material screening. Higgins et al.
developed a framework that integrated chemical robot-
ics and ML to evaluate the stability of multi-
component halide perovskites across a
multidimensional combinatorial space (Figure 8).°%*
This approach involved an integrated automated
experimental workflow, including a pipetting robot
programmed to synthesize diverse perovskite combina-
tions in a 96-well plate, a multi-mode microplate
reader for automated photoluminescence (PL) spectra
measurements, and data analysis employing non-
negative matrix factorization (NMF) and Gaussian pro-
cess regression (GPR). Their study revealed that Br-
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FIGURE 9

(A) Schematic of a high-throughput workflow used for automatic synthesis and characterization of multiple-cation

perovskites. (B) GBT regression and SHAP-based feature importance analysis for T, lifetime of perovskites. Reprinted under the terms of

the CC-BY 4.0 license.”” Copyright 20

21, Springer Nature.

rich mixed halide systems exhibited excellent stability,
whereas I-rich systems showed lower stability. Nota-
bly, materials within the CsPbBr; and FAPbBr;-rich

domains demonstrated

enhanced

stability under

ambient conditions. This study illustrates the powerful
application of ML-guided automation
screening and characterizing perovskite materials for
developing stable perovskite photovoltaic technologies.

in rapidly
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FIGURE 10 Automated synthesis-characterization-analysis workflow for quasi-2D perovskite phase growth. (A) illustration of high-
throughput automated synthesis. (B) High-throughput PL characterizations. (C) Automated data analysis of the PL dataset using a custom
peak-fitting in a Python interface to evaluate each sample. Reprinted with permission.'* Copyright 2023, John Wiley and Sons.

2.2.2 | Metal-halide perovskite thin films and understand how different compositions influence

these metrics. Traditional manual methods are ineffi-
Perovskite composition is crucial for device performance cient, time-consuming, and difficult to unravel complex
and stability. It is highly necessary to systematically study =~ component-property relationships. Automated platforms
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offer a solution by synthesizing and characterizing large
numbers of samples to generate FAIR datasets, while
machine learning can mine these data to extract key fea-
tures and determine optimal solutions. Our group devel-
oped a robotic platform for high-throughput precursor
preparation, thin-film deposition, and stability testing
under various aging conditions.”>*® The automated sys-
tem synthesized and tested over 1000 perovskite samples
within a few days, which enabled the generation of large
datasets (Figure 9A).°” Gradient boosting decision tree
(GBT) regression models, interpreted through SHapley
Additive exPlanations (SHAP), revealed critical stability
determinants such as cation composition, stoichiometry,
and deposition methods (Figure 9B). One key finding
was the temperature-dependent stability reversal phe-
nomenon, where organic cations, like MA, enhanced sta-
bility below 100°C but caused degradation at higher
temperatures, whereas inorganic cations, like Cs,
exhibited the opposite trend. These findings highlight the
intricate interplay of thermodynamic and kinetic factors
in perovskite degradation, which aligns with the theoreti-
cal study on phase stability and miscibility in mixed-
cation perovskites.”® This approach provides insightful
guidelines for compositional design engineering toward
durable perovskite solar materials.

2.2.3 | Quasi-2D metal halide perovskites

Quasi-2D metal halide perovskites exhibit promising
optoelectronic properties and enhanced environmental
stability, which makes them suitable for optoelectronic
applications.”” """ However, the multiphase mixing phe-
nomenon during fabrication remains a challenge.'%* It is
crucial to investigate their phase growth behavior to
understand the initial phase distribution and the princi-
ples governing it. Yang et al. utilized ML-guided high-
throughput automated synthesis and characterization
platform to study the phase formation and growth
dynamics of FA-based quasi-2D  perovskites
(Figure 10).">> A micropipette robot synthesized 95 quasi-
2D perovskite samples with varying 2D:3D component
ratios. High-throughput PL characterization and auto-
mated data analysis via Python tracked phase distribu-
tion changes over time. The analysis revealed that the
n = 2 phase is the most stable, for it formed preferentially
across all 3D perovskite ratios and remained dominant
even when 3D FAPbI; content reached 95%. Higher n-
phases and 3D-like phases appeared as the 3D ratio
increased, with thermal annealing further enhancing
their formation but also increasing the likelihood of
unwanted Pbl, byproducts. Their findings emphasize the
need for precise compositional optimization toward

desired quasi-2D perovskite materials. The research
demonstrated the effectiveness of high-throughput exper-
imentation combined with machine learning algorithms
in accelerating the discovery and optimization of func-
tional energy materials.

2.24 | Perovskite-like materials

Despite achieving remarkable conversion efficiencies,
current perovskite-based photovoltaic devices benefit
from  exploring  perovskite-like  materials  as
complementary options.'®*'°> Using a combination of
high-throughput synthesis and ML diagnostics, Sun et al.
synthesized and characterized 75 perovskite-inspired
compositions within 2 months. Among these, 87%
exhibited band gaps between 1.2 and 2.4 eV.'%° A deep
neural network classified the synthesized compounds
into 0D, 2D, and 3D structures based on experimental
X-ray diffraction (XRD) data; the accuracy rate was 90%.
This approach proved 10 times faster than traditional
manual analysis and successfully clarified the nonlinear
band gap behavior and dimensional transitions in the
Css(Bi;_xSby),(I;_«Bry)s a lead-free alloy series. By inte-
grating accelerated experimental cycles with ML diagnos-
tics, this study demonstrated significant progress in the
discovery and development of functional energy
materials.

2.3 | Device preparation process
optimization

Optimizing process parameters is critical for achieving
high-performance perovskite solar cells. The complex
interdependencies among these parameters form a
multidimensional parameter space, where varying even
a few parameters across multiple values results in thou-
sands or millions of parameter combinations. Traditional
single-variable methods cannot address such high-
dimensional optimization challenges effectively.>® While
high-throughput platforms enable accelerated experi-
ments and data collection, their efficiency is limited by
resource constraints and experimental timelines. Inte-
grating ML models into high-throughput platforms offers
an efficient and intelligent solution to explore these com-
plex parameter spaces.

2.3.1 | Metal-halide perovskite devices

Simultaneously optimizing the processing parameters of
solution-processed perovskite solar cells remains a
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ML-guided closed-loop optimization for high-performance perovskite solar devices. (A) Schematic of the BO-guided
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across iterative rounds. (C) Schematic illustrating the comparison of the ML-guided globalized optimization method and the step-by-step
method. Reprinted under the terms of the CC-BY license.>® Copyright 2023, the Authors.

significant challenge.'”” Our group developed a fully
automated platform, SPINBOT, to optimize
solution-processed semiconductor materials, particularly
perovskites.'"”® The SPINBOT system integrated a BO
algorithm to achieve closed-loop optimization of perov-
skite devices in ambient conditions.”®'* The flowchart
in Figure 11A illustrates the process: the algorithm ini-
tially selects random parameter combinations for experi-
mentation, evaluates film quality and uniformity through
PL spectroscopy, and recommends predicted parameter
sets for the next rounds based on acquired data. This iter-
ative cycle systematically explored the parameter space;
the film quality and device performance improved

gradually. The optimization process considered both con-
ventional process parameters and those challenging to
control manually, such as tip height and solvent dripping
speed. This holistic approach optimized perovskite
processing parameters with only simple PL characteriza-
tion (Figure 11B). The optimized films achieved a maxi-
mum PCE of 21.6% immediately after fabrication in
ambient air. The unsealed devices maintained 90% of
their initial efficiency over 1100 h under 60°C-65°C
photothermal aging. This study proved the capability of
the ML-guided autonomous platform in -effectively
exploring multidimensional parameter spaces for acceler-
ated discovery of performance-optimized perovskite solar
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methods. Reprinted with permission.'® Copyright 2022, Elsevier.

cells (Figure 11C). This research paradigm offers a powerful
tool to accelerate the discovery and optimization of func-
tional thin films. This innovation could transform fields
such as electronics, energy, and optoelectronics by enabling
rapid prototyping, efficient process development, and explo-
ration of novel materials and device architectures.

The ML-guided device optimization strategy has
proven to be effective and reliable across various fabrica-
tion techniques. Liu et al. introduced a method to acceler-
ate the scale-up of perovskite manufacturing by using ML
techniques.'® They incorporated domain knowledge into
the optimization process to form a customized BO frame-
work. This framework was specifically designed to
enhance rapid spray plasma processing (RSPP) and maxi-
mize perovskite devices PCE under open-air conditions.
As shown in Figure 12, the framework carried out an iter-
ative process that began with model-free sampling,
followed by device fabrication and evaluation under stan-
dard test conditions. Data-driven insights and qualitative

feedback, including visual assessments and historical data,
guided the refinement of experimental parameters. This
strategy reduced the number of required experimental iter-
ations, increased efficiency, and minimized experimental
overhead compared with traditional methods. By incorpo-
rating qualitative feedback and a sequential learning
framework, this approach significantly streamlined the
optimization process. Their work highlights the advan-
tages of the ML-driven framework in reducing resource
expenditure and enhancing predictability, advancing the
development of high-performance solar technologies.

2.3.2 | Quasi-2D perovskite devices

Quasi-2D perovskite devices, such as those with Ruddlesden—
Popper structures, offer improved photothermal stability and
environmental resistance compared with traditional three-
dimensional (ABX;) perovskites."'>* Despite these
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advantages, their fabrication involves greater complexity and
requires optimizing multiple parameters. To address these
challenges, a combinatorial high-throughput screening strat-
egy integrated with a ML model was applied. Benchmark
materials were selected based on prior research and experi-
mental findings. A parameter space comprising 16 000
potential—spanning 2D spacer cations, 3D cations, halide
ratios, additives, n-values, and annealing temperatures—was
explored."”* Automation of the fabrication process using
microfluidic devices and programmable robotic platforms
ensured consistent composition and minimized human
errors. Optoelectronic properties of the films were systemati-
cally evaluated, and the resulting data trained the ML model.
The model predicted the performance of new combinations
and refined the optimization process. Specific parameter com-
binations were found to have significant effects on the opto-
electronic properties of the films. Recommendations derived
from the ML model substantially improved device perfor-
mance. By combining automation with ML-driven optimiza-
tion, this approach enhanced experimental repeatability and
efficiency while accelerating the discovery of high-
performance perovskite material combinations.

3 | TOWARD SELF-DRIVING
AMADAP LABORATORY

The introduction of the AMADAP laboratory represents a
significant advancement in establishing “self-driving labo-
ratories” for emerging perovskite photovoltaic technol-
ogy.”*'*11> By integrating high-throughput autonomous
Materials Acceleration Platforms (MAPs) with Device

Acceleration Platforms (DAPs), the AMADAP laboratory
enables simultaneous advancement in material discovery
and device optimization (Figure 13).>''® Optimized com-
munication, data exchange, and feedback loops between
these autonomous platforms allow the effective transforma-
tion of promising materials into high-performance devices,
streamlining research workflows and paradigms. The incor-
poration of ML algorithms and digital twin technology
improves the efficiency and reliability of autonomous oper-
ations through enhanced real-time monitoring, analysis,
and experimental simulation. The AMADAP laboratory
advances the process of autonomous optimization while
establishing a self-driven laboratory environment. This
innovative approach provides comprehensive solutions for
the development of perovskite photovoltaic technology and
marks a paradigm shift in research methodologies.

4 | CHALLENGES

While self-driving laboratories have greatly improved
research efficiency, reduced manual trial and error, and
lowered experimental costs by combining automation
with intelligent optimization, several bottlenecks remain.

4.1 | Construction costs and resource
investment

Building a self-driving AMADAP laboratory requires
high-precision automated equipment and significant
computational resources, and the initial investments are
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therefore high. Long-term operational and maintenance
costs, as well as system upgrades, add to this burden.
However, advancements in software and hardware tech-
nologies and the emergence of scale economies are
expected to reduce these costs over time.

4.2 | Adaptability and customization of
platforms

Ensuring automation platforms to accommodate diverse
material systems and research objectives remains a chal-
lenge. Different experimental tasks often involve unique
preparation processes and parameter spaces. Developing
flexible hardware and software modules tailored to spe-
cific research needs is critical for broader applicability.

4.3 | Analysis of high-dimensional,
multivariate data

High-throughput experiments generate vast amounts of
high-dimensional, multivariate data. Efficiently analyz-
ing, mining, and extracting valuable insights from the
datasets is a significant challenge. Advanced data analysis
tools and machine learning algorithms must be devel-
oped to identify optimal solutions and uncover meaning-
ful relationships.

4.4 | Lack of “self-thinking” capability
Despite their efficiency in performing experiments and
optimizing data, self-driving platforms cannot indepen-
dently propose new scientific questions or discoveries.
Creativity and scientific insight from the researchers
remain crucial for the platform's success; that is, human
intellectual output and experimental design play a deci-
sive role in the whole process.

4.5 | Achieving full automation

Although significant progress has been made, some
experimental tasks still require direct human participa-
tion and intervention, which limits the realization of fully
autonomous operation. Tasks such as precise material
preparation, equipment maintenance and calibration,
and initial data screening often depend on researchers.
Enhancements in automatic material management, self-
diagnosing equipment, automated anomaly handling,
and intelligent experimental design are needed to achieve
higher degrees of automation.

4.6 | Interdisciplinary collaboration
Building and operating an AMADAP laboratory requires
seamless cooperation among experts from various disci-
plines, including chemistry, material science, engineer-
ing, software development, and data science. Effective
communication and collaboration between these interdis-
ciplinary teams remain challenging and are essential for
the successful implementation of the platforms.

Addressing these challenges will be essential for fur-
ther advancing the capabilities and adoption of self-
driving laboratories in materials science research.

5 | CONCLUSION

Perovskite photovoltaic technology is on the verge of
achieving higher energy conversion efficiencies, lower
production costs, and extended service lifetimes, position-
ing itself as a leading renewable energy solution. As this
technology approaches mainstream utilization, the inte-
gration of ML-driven automation promises to revolution-
ize the field by accelerating new material discovery and
optimizing multi-component device fabrication. This
review highlights the transformative influence of ML-
driven automation on the research and development of
perovskite photovoltaics. It demonstrates the application
of automated strategies for rapid multi-component
screening, precise material discovery, performance pre-
diction, and device preparation optimization. The con-
cept of the self-driving AMADAP laboratory represents a
significant step toward realizing “self-driving laborato-
ries” in this domain. This approach integrates and
streamlines the processes of material innovation
and device performance enhancement, expediting the
advancement of emerging photovoltaic technologies. By
providing a comprehensive analysis of current achieve-
ments and challenges, this review not only emphasizes
the potential of ML-driven automation but also outlines a
promising roadmap for the future development of perov-
skite photovoltaic technology.
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